Peter Higgs en el Gran Colisionador de Hadrones, ubicado en la frontera entre Francia y Suiza.

Muere científico creó teoría sobre de qué está hecho el universo

El 4 de julio de 2012 los investigadores en el Gran Colisionador de Hadrones anunciaron que habían encontrado la última pieza de un rompecabezas que llevaba 48 años incompleto.

El Gran Colisionador de Hadrones es la máquina más grande y compleja que jamás se haya construido; la pieza que encontró, es una partícula del mundo subatómico, y es uno de los bloques elementales que componen todo lo que conocemos.

Esa pieza es el bosón de Higgs, y la comprobación de su existencia es uno de los mayores logros de la física moderna.

Con el hallazgo del bosón de Higgs se completaba el Modelo Estándar, que describe el conjunto de partículas elementales que componen todo lo que conocemos, y las fuerzas que interactúan entre ellas para que funcionen como piezas de lego que se ensamblan.

La hazaña del Gran Colisionador de Hadrones fue la culminación de una aventura que comenzó en 1964, cuando el físico británico Peter Higgs publicó una teoría que predecía que el bosón debía existir.

El científico murió este martes a los 94 años.

El propio Higgs decía que el bosón fue «la única buena idea» que tuvo, y en un principio creyó que su teoría no eran más que cálculos inútiles.

Lo que en realidad pasó, sin embargo, es que la partícula que teorizó y que luego el colisionador comprobó que existe, revolucionó la comprensión de nuestro universo.

Esa única buena idea le valió a Higgs el Premio Nobel de Física en 2013, y paradójicamente, le arruinó la vida, según el mismo contó.

En una conversación que ocurrió en 2022, cuando la comprobación del Bosón de Higgs cumplió 10 años, dos especialistas nos explicaron cómo esta diminuta partícula nos ayuda a responder dos grandes preguntas de la humanidad: ¿de dónde venimos y de qué estamos hechos?

  

El Modelo Estándar

Durante mucho tiempo se pensó que los átomos eran las partículas más elementales de lo que todo está hecho.

Luego, aprendimos que esos átomos en realidad están hechos de partículas aún más pequeñas: los protones y neutrones que conforman el núcleo del átomo, y los electrones que orbitan ese núcleo.

Pero hoy, sabemos que incluso esos protones y neutrones se pueden dividir en partículas aún más pequeñas.

En total, se han detectado 17 partículas fundamentales, que al interactuar entre ellas por la influencia de unas fuerzas, conforman todo el universo que conocemos.

A ese conjunto de 17 partículas y fuerzas se le conoce como el Modelo Estándar.

Estas partículas se dividen en dos grandes familias: los fermiones y los bosones.

Los fermiones: que son los ladrillos de los que está hecho todo el universo. Son como piezas de Lego que, según cómo se combinen, forman distintos átomos. Hay 12 fermiones, divididos en seis quarks y seis leptones. En otras palabras: toda la materia que conocemos está hecha de combinaciones de quarks y leptones. O de manera más general: todo lo que vemos está hecho de fermiones.

Los bosones: son las partículas que transportan las fuerzas que hacen interactuar a los fermiones. En total son cinco tipos de bosones, cada uno de ellos transportando una de las tres fuerzas fundamentales que hacen interactuar la materia:

1. El gluon que transportan la fuerza fuerte que mantiene unidos a los quarks;

2 y 3. El bosón W y el bosón Z, que llevan la fuerza débil, que causa que el núcleo de un átomo se desintegre y forme otro átomo;

4. Los fotones, que llevan la fuerza electromagnética.

Tambén hay una cuarta fuerza, quizás la más famosa de todas: la gravedad.

Lo que ocurre es que la gravedad a nivel subatómico es tan débil que su influencia puede ser mayormente ignorada, por eso no es parte del Modelo Estándar.

De esta manera tenemos casi completo el modelo estándar: la familia de fermiones interactúa con la familia de bosones para conformar el universo.

Pero aún nos falta hablar del quinto bosón…

¿Qué es el bosón de Higgs?

Ya hemos visto 12 fermiones y 4 bosones, es decir, 16 de las 17 piezas del Modelo Estándar.

Solo nos falta la pieza que completa el modelo: el bosón de Higgs.

El bosón de Higgs es necesario para responder una pregunta clave: partículas como los quarks y los leptones tienen masa con la cual forman la materia. ¿Pero de dónde obtienen la masa esas partículas?

La respuesta es el llamado campo de Higgs, un entorno invisible que permea todo el universo y que impregna de masa a las partículas que navegan en él.

En ese campo de Higgs están los bosones de Higgs, que son los que untan de masa a las partículas que forman la materia.

«El descubrimiento del bosón de Higgs nos mostró que existe una cosa extraña en la que estamos todos inmersos, y que se conoce como el campo de Higgs», le dice a BBC Mundo Frank Close, profesor emérito de Física teórica en la Universidad de Oxford.

El Motín

Agregar comentario

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.